ISSN 2149-2263 | E-ISSN 2149-2271 Home      
 
Volume : 22 Issue : 3
Current Issue Archive Popular Article Ahead of Print

   
Quick Search





 
The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress [Anatol J Cardiol]
Anatol J Cardiol. 2019; 22(3): 102-111 | DOI: 10.14744/AnatolJCardiol.2019.83648  

The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress

Wenqing Zheng1, Chao Liu2
1Department of Cardiovascular Medicine, Weihai Central Hospital; Weihai City-China
2Department of Cardiology, Shandong Wendeng Osteopathic Hospital; Weihai City-China

Objective: Trimetazidine is a piperazine-derived metabolic agent. It exerts cardioprotective effects against myocardial ischemia/reperfusion (I/R) injury. In addition, studies confirm that the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway serves a beneficent role in attenuating myocardial I/R injury. However, the underlying role of the CSE/H2S pathway in the trimetazidine-induced protection against myocardial I/R injury remains elusive. Therefore, this study investigated whether trimetazidine ameliorates hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injuries in an in vitro cell model of myocardial I/R injury, by enhancing the CSE/H2S pathway.
Methods: The H9c2 cell viability was determined with a cell counting Kit-8.
Results: Trimetazidine significantly increased the cell viability and decreased lactate dehydrogenase (LDH) release in H/R-treated H9c2 cells. Additionally, trimetazidine increased the H2S levels and the CSE mRNA and protein levels, promoting the CSE/H2S pathway under H/R conditions. The inhibition of the CSE/H2S pathway, induced by transfection with specific siRNA against human CSE (si-CSE), eliminated the trimetazidine-induced upregulation of cell viability, downregulation of LDH release, increase of caspase-3 activity and apoptosis regulator BAX expression, and the decrease of apoptosis regulator Bcl-2 expression, which suggests involvement of the CSE/H2S pathway in trimetazidine-induced cardioprotection. Furthermore, trimetazidine mitigated the H/R-induced increase in reactive oxygen species production and NADPH oxidase 2 expression, and decrease in superoxide dismutase activity and glutathione level, in H9c2 cells. These effects were also reversed by si-CSE.
Conclusion: This study revealed that the CSE/H2S pathway mediates the trimetazidine-induced protection of H9c2 cardiomyocytes against H/R-induced damage by inhibiting apoptosis and oxidative stress.

Keywords: Trimetazidine, myocardial ischemia/reperfusion injury, cystathionine γ, -lyase/hydrogen sulfide pathway, apoptosis, oxidative stress.


Wenqing Zheng, Chao Liu. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol. 2019; 22(3): 102-111

Corresponding Author: Wenqing Zheng, China


TOOLS
Full Text PDF
Print
Download citation
RIS
EndNote
BibTex
Medlars
Procite
Reference Manager
Share with email
Share
Send email to author

Similar articles
PubMed
Google Scholar




 
 
KARE Publishing | Copyright 2018 Turkish Society of Cardiology